

Mild solvolysis for fiber-reinforced composites

Extracting high-value materials from complex end-of-life parts

Gianmarco Griffini

Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" Politecnico di Milano - Italy

EU Composites Advantage Unveiled 22.05.2025, Ljubljana (Slovenia)

This project has received funding from the European Union's Horizon Europe research and innovation programme under Grant Agreement No. 101058756

~ ~

The state of the art

Structural and high-performance fiber-reinforced composites (**thermosets**):

- GFRCs \rightarrow crosslinked unsaturated polyesters, vinyl esters
- CFRCs \rightarrow epoxies

RE

- high strength-to-weight ratio
- dimensional stability
- durability

The state of the art

Structural and high-performance fiber-reinforced composites (**thermosets**):

- GFRCs \rightarrow crosslinked unsaturated polyesters, vinyl esters
- CFRCs \rightarrow epoxies

RE

- high strength-to-weight ratio
- dimensional stability
- durability

Challenging recyclability

- Recovery of reinforcing fibers
- Recovery of matrix material
- Second-life applications

Composite waste generation

Increasing volumes of fiber-reinforced **composite waste** generated annually:

wind

RE

- aerospace
- automotive

Decommissioned Blade weight (including Repowering)

Source: WindEurope

Composite recycling: current status

End-of-life scenarios for fiber-reinforced composites

Technology readiness levels:

RE

- Mechanical shredding, combustion (co-processing), pyrolysis \rightarrow TRL9
- HVF, chemical recycling \rightarrow TRL4-6

Current limitations of recycling technologies:

- High levels of **gas emissions**
- Marginal **economic** profitability
- **Poor quality** of reclaimed materials (fibers, matrix)
- High-pressure processes
- Highly acidic/alkaline process conditions
 - \rightarrow special reactor design and components

The problem

R

Current limitations of recycling technologies:

- High levels of **gas emissions**
- Marginal **economic** profitability
- **Poor quality** of reclaimed materials (fibers, matrix)
- High-pressure processes
- Highly acidic/alkaline process conditions
 → special reactor design and components

Flexible. Mild. Circular.

The recycling process for fiber-reinforced composites.

No pre-treatments on the EoL part	Floviblo
• Universal process	FIEXIBLE

No pre-treatments on the EoL partUniversal process		Flexible
 Process conditions: temperatures < 250 °C atmospheric pressure neutral/slightly acidic conditions low-cost commercially-available catalysts 	standard reactor design → lower CapEx	Mild

 No pre-treatments on the EoL part Universal process 	Flexible
 Process conditions: temperatures < 250 °C atmospheric pressure neutral/slightly acidic conditions low-cost commercially-available catalysts 	Mild
 Bioderived solvents Recovery of solvent and catalyst Recovery of fibrous reinforcement with preserved mechanical properties Recovery of oligomeric organic fraction retaining high chemical functionality 	Circular

P_{amb}, T < 250 °C, t

"Process of recovery of fibers and of an organic oligomeric fraction from polymer-matrix composite materials"

(Processo di recupero di fibre e di una frazione organica oligomerica da materiale composito a matrice polimerica)

G. Griffini, S. Turri, V. De Fabritiis, L. Matta

Italian patent application for industrial invention (P08221/IT, priority date: 05.12.2024) \rightarrow extension to other countries under consideration

Demonstration and validation on larger scale equipment

- Process **optimization**
- Economics and **business** plan

Thank you for your kind attention!

Contacts:

Prof. Gianmarco Griffini

Department of Chemistry, Materials and Chemical Engineering "Giulio Natta"

Politecnico di Milano - Italy

gianmarco.griffini@polimi.it

